Search results for "alpha helix"

showing 8 items of 8 documents

Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis

2017

Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed t…

0301 basic medicineProteasesHealth Toxicology and MutagenesisSize-exclusion chromatographyBeta sheetBacillus thuringiensislcsh:MedicineBiologyToxicologyCleavage (embryo)ArticleProtein Structure Secondary03 medical and health sciencestrypsin inhibitorsBacterial ProteinsSDS-PAGE artefactprotease stabilitymedicinebacterial secreted proteinsAnimalsTrypsinMode of actionProtein secondary structureVip proteinsIntestinal Secretionslcsh:Rtoxin activationVip proteins; bacterial secreted proteins; toxin activation; proteolytic activation; trypsin inhibitors; <i>Bacillus thuringiensis</i>; SDS-PAGE artefact; protease stabilityTrypsinMolecular biologyLepidoptera030104 developmental biologyBiochemistryproteolytic activationLarvaProteolysisPeptidesAlpha helixmedicine.drugToxins
researchProduct

Influence of the hydrophilic face on the folding ability and stability of α-helix bundles: relevance to the peptide catalytic activity

2000

Although not the sole feature responsible, the packing of amino acid side chains in the interior of proteins is known to contribute to protein conformational specificity. While a number of amphipathic peptide sequences with optimized hydrophobic domains has been designed to fold into a desired aggregation state, the contribution of the amino acids located on the hydrophilic side of such peptides to the final packing has not been investigated thoroughly. A set of self-aggregating 18-mer peptides designed previously to adopt a high level of alpha-helical conformation in benign buffer is used here to evaluate the effect of the nature of the amino acids located on the hydrophilic face on the pa…

chemistry.chemical_classificationCrystallographyEndocrinologyProtein structurechemistryProtein designProtein foldingPeptideBiochemistryPeptide sequenceProtein tertiary structureAlpha helixAmino acidThe Journal of Peptide Research
researchProduct

The structural plasticity of the C terminus of p21Cip1 is a determinant for target protein recognition.

2003

The cyclin-dependent kinase inhibitory protein p21(Cip1) might play multiple roles in cell-cycle regulation through interaction of its C-terminal domain with a defined set of cellular proteins such as proliferating cell nuclear antigen (PCNA), calmodulin (CaM), and the oncoprotein SET. p21(Cip1) could be described as an intrinsically unstructured protein in solution although the C-terminal domain adopts a well-defined extended conformation when bound to PCNA. However, the molecular mechanism of the interaction with CaM and the oncoprotein SET is not well understood, partly because of the lack of structural information. In this work, a peptide derived from the C-terminal domain of p21(Cip1) …

Cyclin-Dependent Kinase Inhibitor p21Models MolecularMagnetic Resonance SpectroscopyCalmodulinChromosomal Proteins Non-HistoneProtein ConformationPeptideBiologyLigandsBiochemistryBinding CompetitiveDomain (software engineering)Molecular recognitionCalmodulinCyclinsProliferating Cell Nuclear AntigenEscherichia coliHumansHistone ChaperonesMolecular Biologychemistry.chemical_classificationC-terminusCircular DichroismOrganic ChemistryCell CycleProteinsPeptide FragmentsCell biologyDNA-Binding ProteinschemistryBiochemistrybiology.proteinMolecular MedicineTarget proteinAlpha helixBinding domainTranscription FactorsChembiochem : a European journal of chemical biology
researchProduct

The Folding State of the Lumenal Loop Determines the Thermal Stability of Light-Harvesting Chlorophyll a/b Protein

2004

The major light-harvesting protein of photosystem II (LHCIIb) is the most abundant chlorophyll-binding protein in the thylakoid membrane. It contains three membrane-spanning alpha helices; the first and third one closely interact with each other to form a super helix, and all three helices bind most of the pigment cofactors. The protein loop domains connecting the alpha helices also play an important role in stabilizing the LHCIIb structure. Single amino acid exchanges in either loop were found to be sufficient to significantly destabilize the complex assembled in vitro [Heinemann, B., and Paulsen, H. (1999) Biochemistry 38, 14088-14093. Mick, V., Eggert, K., Heinemann, B., Geister, S., and…

ChlorophyllProtein DenaturationProtein FoldingPhotosystem IILight-Harvesting Protein ComplexesBiochemistryProtein structureTrypsinPlant Proteinschemistry.chemical_classificationChemistryChlorophyll AHydrolysisPeasTemperaturePhotosystem II Protein ComplexSodium Dodecyl SulfateProtein Structure TertiaryAmino acidKineticsCrystallographyAmino Acid SubstitutionMembrane proteinThylakoidHelixBiophysicsElectrophoresis Polyacrylamide GelProtein foldingAlpha helixBiochemistry
researchProduct

A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations

2007

Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxyge…

chemistry.chemical_classificationbiologyStereochemistryTyrosinaseClinical BiochemistryActive sitePeptideCell BiologyPlant ScienceAmino acidMelaninEnzymechemistrySide chainbiology.proteinAgronomy and Crop ScienceAlpha helixDevelopmental BiologyPigment Cell Research
researchProduct

2020

Teraryl-based alpha-helix mimetics have resulted in efficient inhibitors of protein-protein interactions (PPIs). Extending the concept to even longer oligoarene systems would allow for the mimicking of even larger interaction sites. We present a highly efficient synthetic modular access to quateraryl alpha-helix mimetics, in which, at first, two phenols undergo electrooxidative dehydrogenative cross-coupling. The resulting 4,4′-biphenol is then activated by conversion to nonaflates, which serve as leaving groups for iterative Pd-catalyzed Suzuki-cross-coupling reactions with suitably substituted pyridine boronic acids. This work, for the first time, demonstrates the synthetic efficiency of …

010405 organic chemistryPeptidomimetic010402 general chemistryElectrosynthesis01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesProtein–protein interactionCatalysischemistry.chemical_compoundchemistryPyridinePhenolsPhysical and Theoretical ChemistryTrifluoromethanesulfonateAlpha helixCatalysts
researchProduct

Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site

2003

Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength anomalous dispersion from a selenomethionine-substituted protein and refined at 1.2 A resolution. This enzyme represents a completely different structure and a novel one-step mechanism. The fold features a highly curved six-stranded mixed beta-sheet, with four alpha-helices packed onto it to create a …

Models MolecularAFSG Stafafdelingen (WUATV)10050 Institute of Pharmacology and Toxicologydrug protein bindingEnantioselectivityEpoxide hydrolaseCrystallography X-Rayuncultured actinomyceteCatalytic Domain2400 General Immunology and Microbiologyalpha helixRhodococcuscholesterol epoxide hydrolasenaphthalene 12-dioxygenasedcl14limonene 12 epoxide hydrolaseEpoxide hydrolaseBacteria (microorganisms)delta(5)-3-ketosteroid isomeraseEpoxide HydrolasesLimonene-12-epoxide hydrolaseGeneral Neurosciencearticle2800 General NeuroscienceActinobacteria (class)Articlesagrobacterium-radiobacterEnzyme structureRecombinant Proteinsunclassified drugenzyme structurereaction analysisBiochemistrypriority journalenzyme active siteMechanism2-dioxygenaseDimerizationBiotechnologychemical reactioncrystal structureaspergillus-nigermacromolecular structuresStereochemistrybeta sheetvalpromideMolecular Sequence Data610 Medicine & healthGenetics and Molecular BiologyBiologyGeneral Biochemistry Genetics and Molecular BiologyBacterial Proteinssite directed mutagenesis1300 General Biochemistry Genetics and Molecular BiologyHydrolase1312 Molecular BiologyAmino Acid SequencedetoxificationRhodococcus erythropolisBiologyMonoterpene degradationMolecular Biologyprotein data-bankenzyme substrate complexEnzyme substrate complexnonhumancatalysisSequence Homology Amino AcidGeneral Immunology and Microbiologybacterial enzymeActive sitecrystal-structureAFSG Staff Departments (WUATV)enzyme metabolismProtein SubunitsenzymeEpoxide HydrolasesGeneral Biochemistrybiology.proteinMutagenesis Site-Directed570 Life sciences; biologyselenomethioninenaphthalene 1Alpha helix
researchProduct

Membrane-insertion fragments of Bcl-xL, Bax, and Bid.

2004

Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapopt…

GlycosylationStereochemistryRecombinant Fusion ProteinsMolecular Sequence Databcl-X ProteinBcl-xLApoptosisBiochemistryProtein Structure SecondaryMembrane LipidsMiceProtein structureBcl-2-associated X proteinPredictive Value of TestsProto-Oncogene ProteinsProtein Interaction MappingAnimalsHumansAmino Acid SequencePeptide sequencebcl-2-Associated X ProteinbiologyIntracellular MembranesTransmembrane proteinPeptide FragmentsTransport proteinProtein TransportProto-Oncogene Proteins c-bcl-2Multigene FamilyHelixbiology.proteinBiophysicsCarrier ProteinsHydrophobic and Hydrophilic InteractionsAlpha helixBH3 Interacting Domain Death Agonist ProteinBiochemistry
researchProduct